Table of Contents

Overview ... 1

General Terminology and Definitions 2
 Definitions ... 3

Wafer Plane ... 4
 Specification Purpose 4
 Benefits .. 4
 General Definitions 4
 Specification Description 5
 Specification Values 5
 Use with Automated Equipment 5

Four Point Contact 6
 Contact Location 6
 Benefits of Four Point Contact 6
 Equipment Interface 6
 Wafer Carriers Included and Exceptions 6

General Interface Information 7
 Recommended Contact Points 6
 Print Based Interface Design 6
 Benefits of Four Point Contact 6

Interface Points: Wafers Horizontal 7
 General Recommendations 7
 Sample Interface Plate 7
 Contact Area A .. 8
 Contact Area B .. 8
 Contact Area C .. 8

Interface Points: Wafers Vertical 9
 General Recommendations 9
 Sample Interface Plate 9
 Contact Area A .. 9
 Contact Areas B and C 10

Interface Points: Robotic Handling 10
 General Recommendations 10
 Robotic Handling Features 10
 Endwall Flanges 10
 “H” Bar End Flanges 11
 Endwall Handle 11
 Top Flanges .. 11

Material Information 12
 Material Properties and Equipment Interface ... 12
 Static Protection 12
 Moisture Absorption 12
 Applications ... 12
 Wafer Transport Carriers 12
 Process Wafer Carriers 13

Detailed Material Properties 13

For More Information 14

Terms and Conditions 14

Product Warranties 14

Overview

At Entegris, we are committed to working with you, the equipment supplier, to provide simple solutions for our joint customers in the semiconductor industry. Our experience has shown that semiconductor manufacturers want to order their equipment and their wafer carriers without worrying about wafer carrier/equipment interface issues. By sharing information with you we can provide our joint customers a compatible equipment and wafer carrier combination.
General Terminology and Definitions

This section contains dimensions called out on standard carrier drawings. These dimensions, as well as general wafer carrier terms, are defined below.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Length</td>
</tr>
<tr>
<td>A2</td>
<td>Width (with/without flanges) includes stripper rails</td>
</tr>
<tr>
<td>A3</td>
<td>Height (excluding pin)</td>
</tr>
<tr>
<td>B1</td>
<td>Pockets per carrier</td>
</tr>
<tr>
<td>B2</td>
<td>Pocket spacing</td>
</tr>
<tr>
<td>B3</td>
<td>Center distance from the first to last pocket</td>
</tr>
<tr>
<td>C1</td>
<td>Pocket width</td>
</tr>
<tr>
<td>C2</td>
<td>Pocket depth</td>
</tr>
<tr>
<td>C3</td>
<td>Pocket flat</td>
</tr>
<tr>
<td>C4</td>
<td>Pocket size (inside pocket across to inside pocket)</td>
</tr>
</tbody>
</table>

MACHINE FIT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Distance from Datum A to the center line of the first pocket</td>
</tr>
<tr>
<td>D3a</td>
<td>Distance from Datum A to the front of the "H" bar at the center of the carrier</td>
</tr>
<tr>
<td>D3b</td>
<td>Distance from Datum A to the front of the "H" bar 13 mm (0.5") from the side of the carrier</td>
</tr>
<tr>
<td>D4a</td>
<td>Distance from Datum B to the center line of the "H" bar</td>
</tr>
<tr>
<td>D4b</td>
<td>Distance from Datum B to the center line of the wafer</td>
</tr>
<tr>
<td>D5a</td>
<td>Bar web width</td>
</tr>
<tr>
<td>D5b</td>
<td>Bar width</td>
</tr>
<tr>
<td>D5c</td>
<td>Distance from Datum A to the front of the "H" bar web</td>
</tr>
<tr>
<td>D6a</td>
<td>Inside width of the bottom track</td>
</tr>
<tr>
<td>D6b</td>
<td>Overall width of the "H" bar at the top of the wafer carrier</td>
</tr>
<tr>
<td>D8a</td>
<td>Overall width of the robotic pick-up flanges</td>
</tr>
</tbody>
</table>
Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar end</td>
<td>See "H" bar.</td>
</tr>
<tr>
<td>Crossbar</td>
<td>The mass of material connecting the two sides of the carrier at the bar end of the carrier.</td>
</tr>
<tr>
<td>End wall</td>
<td>The wall of the carrier opposite the "H" bar end of the carrier.</td>
</tr>
<tr>
<td>Flange</td>
<td>Mass of material on the exterior of a carrier, perpendicular to the side walls.</td>
</tr>
<tr>
<td>"H" bar</td>
<td>The end of the wafer carrier that has only one crossbar and is capable of elevator equipment interface.</td>
</tr>
<tr>
<td>Hole</td>
<td>The area for the pin of another carrier to enter for transferring wafers.</td>
</tr>
<tr>
<td>Left side</td>
<td>The left side of the carrier when viewed from the "H" bar end while positioned on its track.</td>
</tr>
<tr>
<td>Overall size</td>
<td>Overall size is measured by length by width by height as shown in the diagram. Pin height is not included in the height measurement for wafer carriers.</td>
</tr>
<tr>
<td>Pin</td>
<td>The mass of material which enters the hole or slot of another carrier for transferring wafers.</td>
</tr>
<tr>
<td>Pocket</td>
<td>The area in which the wafer is located in the carrier.</td>
</tr>
<tr>
<td>Pocket flat</td>
<td>The width of the pocket along the vertical walls at its most narrow distance.</td>
</tr>
<tr>
<td>Pocket spacing</td>
<td>The distance between pocket centerlines.</td>
</tr>
<tr>
<td>Pocket width</td>
<td>The width of the pocket at its widest distance.</td>
</tr>
<tr>
<td>Right side</td>
<td>The right side of the carrier when viewed from the "H" bar end while positioned on its track.</td>
</tr>
<tr>
<td>Track clearance</td>
<td>The unobstructed area between the two carrier sides on the bar end.</td>
</tr>
<tr>
<td>Wafer transfer</td>
<td>The act of relocating wafers from one carrier into another.</td>
</tr>
</tbody>
</table>
Wafer Plane

This section provides an explanation of the wafer plane concept and discusses the benefits of an improved wafer plane. Carriers that hold each wafer in a predictable location perform better on automated wafer transfer equipment. A carrier that does not hold wafers in a predictable location can cause numerous robotics and wafer transfer problems. To reduce these problems, Entegris continually strives to improve wafer plane dimensions.

Specification Purpose

The wafer plane specification provides the specific, predictable location of each wafer in a carrier.

Benefits

The benefits of an improved wafer plane include:
- Reduced equipment adjustments
- Improved accuracy in wafer transfers
- Minimized missed wafer transfers
- Reduced equipment shut downs
- Minimized damage or breakage of wafers
- Reduced particle generation caused by wafers rubbing on carriers

General Definitions

The following definitions define and clarify the wafer plane concept:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer plane</td>
<td>The position of the wafer in a carrier.</td>
</tr>
<tr>
<td>Wafer plane zone</td>
<td>The acceptable position for a wafer, defined by the offset dimension and tolerance.</td>
</tr>
<tr>
<td>Pocket center plane</td>
<td>The imaginary plane that exactly bisects each pocket.</td>
</tr>
<tr>
<td>Wafer seated surface</td>
<td>The bottom of the wafer, typically the unfinished side of a wafer in process. All dimensional data is derived from this surface.</td>
</tr>
<tr>
<td>Offset dimension</td>
<td>The distance from the pocket center plane to the bottom, or seated surface of the wafer.</td>
</tr>
<tr>
<td>Datum A</td>
<td>The flat surface defined by the "H" bar end of a wafer carrier. Datum A can be established by placing the carrier "H" bar end down on a flat surface.</td>
</tr>
<tr>
<td>Datum B</td>
<td>The flat surface defined by the bottom, or track of the carrier. Datum B can be established by placing the carrier track end down on a flat surface.</td>
</tr>
</tbody>
</table>
Specification Description

Wafer plane is defined by an offset dimension and a tolerance. The offset dimension is called out from the pocket center plane, a distance calculated from Datum A (“H” bar).

Offset Dimension

The offset dimension is the distance from the pocket center plane to the center of the wafer plane zone, toward Datum A. This dimension, always negative, defines the center of the wafer plane zone.

Tolerance

The tolerance defines the thickness of the wafer plane zone.

Calculating Pocket Center Plane Distance

The pocket center plane distance varies for each specific pocket in a wafer carrier. It can be calculated with the following formula:

\[X = D1 + (N - 1) \times B2 \]

Where:

- \(X \) = Pocket center plane distance for pocket \(N \) from Datum A
- \(D1 \) = Distance from Datum A to the center plane of pocket one
- \(N \) = Pocket number (pocket one is closest to Datum A)
- \(B2 \) = Wafer carrier pitch (pocket spacing)

Calculating Wafer Plane Zone

The pocket center plane distance varies for each specific pocket in a wafer carrier. It can be calculated with the following formulas:

\[Y = X - \text{Offset} + \text{Tolerance} \]
\[Z = X - \text{Offset} - \text{Tolerance} \]

Where:

- \(Y \) = Top limit of the wafer plane zone for pocket \(N \)
- \(Z \) = Bottom limit of the wafer plane zone for pocket \(N \)
- \(X \) = Pocket center plane distance for pocket \(N \)

NOTE: The offset value is given as a negative value. Please use the absolute, or non-negative, value in the above calculations.

Specification Values

Wafer plane specifications vary between various wafer carrier series and materials. Typical offset dimensions range between -0.9 mm and -1.1 mm (-0.04” and -0.05”). Typical tolerances are ±0.6 mm (0.03”). Please reference the specific drawings for each wafer carrier for exact dimensions and tolerances.

Use with Automated Equipment

Automated wafer transfer equipment is programmed to locate the wafer within the wafer plane zone. Difficulties can arise when the wafer’s seated surface is outside this zone. The size of the zone is also important. As the tolerances are tightened, the zone becomes smaller and wafer transfer equipment operates with fewer difficulties.
Four Point Contact

Entegris utilizes a patented four point contact on the “H” bar end and on the track of most 200 mm wafer carriers. Supporting the carrier on four specific points eliminates the variation inherent in trying to maintain a precise dimension over a long feature such as conventional “H” bar rails and track.

Contact Location

The location of the four points is shown by the arrows in the diagram.

Benefits of Four Point Contact

“H” bar

When the carrier is used with the wafers in a horizontal position, the four point contact ensures correct wafer orientation and wafer height in relation to the centerline of the first pocket.

Track

When the carrier is used with the wafers in the vertical position and located by the center notch on the carrier track, the four point contact eliminates rocking to ensure consistent placement of wafers for vertical transfer.

Equipment Interface

For optimum use on equipment, the portion of equipment in direct contact with the wafer carrier (stage and/or “H” bar nest) should be designed to provide planar support for all four points.

Wafer Carriers Included and Exceptions

Most 200 mm carriers have a four point contact feature on both the “H” bar end and the track with the following exceptions:

The Entegris wafer carriers listed below do not have a four point contact feature on either the “H” bar end or the track. They should be supported along the length of the two “H” bar rails with wafers in the horizontal position or along the length of the track with wafers in the vertical position.

• A192-81M-0215
• A192-82M-0215

The Entegris wafer carriers listed below have a four point contact feature on the “H” bar end only. They do not have a four point contact on the track. They should be supported along the length of the track with wafers in the vertical position.

• A192-80M-0215
• A198-80M-47C02
• A198-80MB-47C02

The Entegris wafer carriers listed below have a four point contact feature on the track only. They do not have a four point contact on the “H” bar end. They should be supported along the length of the two “H” bar rails with wafers in the horizontal position.

• PA192-80M-XXXX
• PA192-80MN-XXXX
• PA195-80M-XXXX
General Interface Information

Recommended Contact Points

Entegris strongly urges the use of only recommended contact points in developing wafer carrier interfaces. These are typically tightly controlled dimensions that will provide optimal, consistent interface.

Entegris cannot guarantee reliable equipment interface if contact points other than the recommended contact points are used.

Print Based Interface Design

Interfaces should be designed based on prints detailing wafer carrier specifications using controlled dimensions. Controlled dimensions are identified on prints with a circle around the dimension. Use of a sample wafer carrier is not recommended as it does not incorporate nominal, minimum and maximum dimensions.

Tolerances

It is critical to use the entire tolerance ranges provided on the prints when developing interfaces for wafer carriers.

Reducing Particle Generation

Properly designed interface plates can greatly reduce particle generation. The use of radius edges and smooth surfaces on areas that interface the wafer carrier will reduce the number of particles generated by abrasion of the wafer carrier.

Interface Points: Wafers Horizontal

General Recommendations

Entegris strongly recommends that only the contact points detailed in this section be used to locate wafer carriers for horizontal wafer handling. These are typically tightly controlled dimensions that will provide optimal, consistent interface.

Entegris cannot guarantee reliable equipment interface if contact points other than the recommended contact points are used.

Sample Interface Plate

When designing an interface plate, use generous radiuses for optimum wafer carrier lead in. In addition, minimize registration points for ease of carrier placement.

The interface plate should be designed to locate the wafer carrier with the wafers horizontal using only an appropriate combination of Entegris recommended contact areas.

Height of contact area interface pads should be no greater than 3.8 mm (0.15”).

Recommended Contact Areas

- A + B
- A + C

Contact Areas Not Recommended

- A + B + C
- B + C
Contact Area A

When designing an area A interface, use the following dimensions.

D6a: Inside Width at “H” bar

The interface location should be within 25.4 mm (1.00”) of the crossbar.

D5b: “H” bar WidthTrack

Contact Area B

When designing an area B interface, use the following information.

D6b: Inside Width at Top (#1)

The interface location should be within 12.7 mm (0.50”) of the top opening of the wafer carrier.

Four Point “H” Bar Contact

Ensure the wafer carrier is supported only on the four points of the “H” bar contact to ensure proper height to pocket (D1). Please see page 7 for more information.

Contact Area C

When designing an Area C interface, use the following dimensions.

D6a: Inside Track Width

D4a: Cross Bar Centerline

The interface location should be within 9.5 mm (0.38”) of the wafer carrier track.

Four Point “H” Bar Contact

Ensure the wafer carrier is supported only on the four points of the “H” bar contact to ensure proper height to pocket (D1). Please see page 7 for more information.
Interface Points: Wafers Vertical

General Recommendations

Entegris strongly recommends that only the contact points detailed in this section be used to locate wafer carriers for vertical wafer handling.

Entegris cannot guarantee reliable equipment interface if contact points other than the recommended contact points are used.

Sample Interface Plate

This sample interface plate locates the wafer carrier with the wafers vertical by using Entegris recommended interface points. Use of the center notches provides the most accurate wafer carrier registration for vertical handling.

Recommended Contact Areas

- A + B + C

Contact Area A

Center Notch

Use of the center notches provides the most accurate wafer carrier registration for vertical handling.

D9a, D9b, D9c, D9e

Center Notch Location (#1)

The center of the center notches on 200 mm wafer carriers, measured from Datum A, are:

- 25 Capacity: 101.6 mm (4.00")
- 26 Capacity: 104.8 mm (4.13")

The center of the center notch may not be at the center of the track length (#1).

For 25 capacity wafer carriers, the center notches on the wafer carrier track (Datum B) are located within 0.3 mm (0.01") of the pocket centerline for pocket 13.

For 26 capacity wafer carriers, the center notches on the wafer carrier track (Datum B) are located within 0.3 mm (0.01") of the centerline of the tooth between pockets 13 and 14.
Contact Areas B and C

Track Length (#2 on previous diagram)

D6a: Inside Track Width
The depth of the recess for the wafer carrier track should be a maximum of 6.4 mm (0.25").

Four Point Track Contact
Ensure the wafer carrier is supported only on the four points of the track to ensure proper orientation. Please see page 6 for more information.

Robotic Handling Features
Entegris provides many different features to facilitate robotic handling. The following general categories of robotic handling features are detailed below.

- Endwall flanges
- “H” bar end flanges
- Endwall handle
- Top flanges

Endwall Flanges
Robotic flanges on a wafer carrier endwall are available in many styles including outboard and inboard flanges. Outboard flanges are near the outer edges of the wafer carrier. Inboard flanges are in towards the center of the end wall.

The controlled dimension (#1) for end wall flanges is the overall length from Datum A to the inside (backside) of the flange.

Interface Points: Robotic Handling

General Recommendations
When developing interfaces to robotic handling features, it is important to reference the specifications for the specific wafer carrier as features vary in design and location. If additional information is required, contact Entegris Applications Engineering.
“H” bar End Flanges
Robotic flanges on a wafer carrier “H” bar end are near the outer edges of the wafer carrier. This placement is required to avoid interference with the inside “H” bar surface.

Endwall Handle
Endwall handles are placed towards the center of the endwall and above the center of gravity of the carrier.

Top Flanges
Top flanges run along the top length of the wafer carrier, parallel to the track.
Use of the top flanges for robotic movement and placement of the wafer carrier is acceptable only when precise placement is not required.
Material Information

Material Properties and Equipment Interface

Material properties can have a direct effect on equipment interface. The primary properties that affect equipment interface are dimensional stability, static protection and moisture absorption.

Dimensional Stability

Dimensional stability is the ability of a material to retain consistent dimensions over time. Highly rigid materials remain dimensionally consistent, ensuring reliable interface.

Static Protection

Static protection is the ability of a material to avoid buildup of static charges that may later discharge, causing damage to devices and causing equipment to shut down. Materials that offer static protection prevent static charges from building up, hence avoiding the problems of electrostatic discharge.

Moisture Absorption

Moisture absorption is the amount of moisture that a material will absorb. The level of absorption will directly affect vacuum pump down times.

Applications

Wafer carrier materials can be divided into two primary categories based on the wafer carrier’s primary application.

- Wafer transport carriers
- Process wafer carriers

Wafer Transport Carriers

Wafer transport carriers are used to store and transport wafers throughout the production process. They offer limited chemical resistance and should not be used with harsh chemicals.

Standard Material Definitions

STAT-PRO® 9000 Material

STAT-PRO 9000 black static dissipative material is a blend of Carbon Nanotube (CNT) enhanced polyetheretherketone (PEEK™ polymer) carbon compound.

STAT-PRO 3000 Material

STAT-PRO 3000 black static dissipative material is a blend of PEEK polymer and carbon fiber.

EMSTAT AR+

EMSTAT AR+ is a blend of high-purity polypropylene with milled carbon fiber.

STAT-PRO 100 Material

STAT-PRO 100 black static dissipative polypropylene is a blend of polypropylene and pure inert carbon powder.

Blue Polypropylene

Blue polypropylene is standard polypropylene with an additive to make the material blue.

MATERIAL PROPERTIES OVERVIEW

<table>
<thead>
<tr>
<th>Rank</th>
<th>Material</th>
<th>Dimensional Stability</th>
<th>Static Protection</th>
<th>Moisture Absorption</th>
<th>General Interface Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STAT-PRO 9000</td>
<td>Excellent</td>
<td>Exceptional</td>
<td>Low</td>
<td>The best material available for reliable interface.</td>
</tr>
<tr>
<td>2</td>
<td>STAT-PRO 3000</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Low</td>
<td>The next best material available for reliable interface.</td>
</tr>
<tr>
<td>3</td>
<td>EMSTAT AR+</td>
<td>Poor</td>
<td>Very good</td>
<td>Very low</td>
<td>Good material for reliable interface.</td>
</tr>
<tr>
<td>4</td>
<td>STAT-PRO 100</td>
<td>Poor</td>
<td>Very good</td>
<td>Very low</td>
<td>Poor material for interface, still widely used.</td>
</tr>
<tr>
<td>5</td>
<td>Blue polypropylene</td>
<td>Poor</td>
<td>None</td>
<td>Very low</td>
<td>Very poor material for interface.</td>
</tr>
</tbody>
</table>
Process Wafer Carriers

Process wafer carriers are used in processes that require chemical resistance. PFA material (translucent perfluoroalkoxy) is used as it offers superior chemical resistance. PFA materials provide:

- Excellent chemical compatibility
- Poor dimensional stability
- No static protection
- Minimal moisture absorption

Detailed Material Properties

Static Protection

- Surface resistivity test method ASTM D-257

<table>
<thead>
<tr>
<th>Material</th>
<th>Surface Resistivity</th>
<th>Static Decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT-PRO 9000</td>
<td>10^4 - 10^6 ohms/sq</td>
<td><0.02 sec</td>
</tr>
<tr>
<td>STAT-PRO 3000</td>
<td>10^5 - 10^{10} ohms/sq</td>
<td><0.01 sec</td>
</tr>
<tr>
<td>EMSTAT AR+</td>
<td>10^6 - 10^{10} ohms/sq</td>
<td><0.01 sec</td>
</tr>
<tr>
<td>STAT-PRO 100</td>
<td>10^2 - 10^8 ohms/sq</td>
<td>0.01 sec</td>
</tr>
<tr>
<td>Blue polypropylene</td>
<td>$<10^{13}$ ohms/sq</td>
<td><30 sec</td>
</tr>
<tr>
<td>Natural PFA</td>
<td>$<10^{13}$ ohms/sq</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Moisture Absorption

- Test method ASTM 570

<table>
<thead>
<tr>
<th>Material</th>
<th>Water Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT-PRO 9000</td>
<td>0.04%</td>
</tr>
<tr>
<td>STAT-PRO 3000</td>
<td>0.05%</td>
</tr>
<tr>
<td>EMSTAT AR+</td>
<td>0.01%</td>
</tr>
<tr>
<td>STAT-PRO 100</td>
<td>0.02%</td>
</tr>
<tr>
<td>Blue polypropylene</td>
<td>0.02%</td>
</tr>
<tr>
<td>Natural PFA</td>
<td>< 0.03%</td>
</tr>
</tbody>
</table>

Temperature Limits

<table>
<thead>
<tr>
<th>Material</th>
<th>Maximum Continuous Use Temperature</th>
<th>Maximum Wafer Insertion Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT-PRO 9000</td>
<td>120°C (248°F)</td>
<td>340°C (644°F)</td>
</tr>
<tr>
<td>STAT-PRO 3000</td>
<td>120°C (248°F)</td>
<td>340°C (644°F)</td>
</tr>
<tr>
<td>EMSTAT AR+</td>
<td>55°C (131°F)</td>
<td>70°C (158°F)</td>
</tr>
<tr>
<td>STAT-PRO 100</td>
<td>55°C (131°F)</td>
<td>70°C (158°F)</td>
</tr>
<tr>
<td>Blue polypropylene</td>
<td>55°C (131°F)</td>
<td>70°C (158°F)</td>
</tr>
<tr>
<td>Natural PFA</td>
<td>180°C (356°F)</td>
<td>250°C (482°F)</td>
</tr>
</tbody>
</table>

Flammability

- Test method UL94

<table>
<thead>
<tr>
<th>Material</th>
<th>Flammability</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT-PRO 9000</td>
<td>V-0</td>
</tr>
<tr>
<td>STAT-PRO 3000</td>
<td>V-0</td>
</tr>
<tr>
<td>EMSTAT AR+</td>
<td>HB</td>
</tr>
<tr>
<td>STAT-PRO 100</td>
<td>HB</td>
</tr>
<tr>
<td>Blue polypropylene</td>
<td>UL94</td>
</tr>
<tr>
<td>Natural PFA</td>
<td>UL94</td>
</tr>
</tbody>
</table>
For More Information

Please call your Regional Customer Service Center today to learn what Entegris can do for you. Visit www.entegris.com and select the Customer Service link for the center nearest you.

Terms and Conditions of Sale

All purchases are subject to Entegris' Terms and Conditions of Sale. To view and print this information, visit www.entegris.com and select the Legal Notices link from the footer.

Product Warranties

For Product Warranties, visit www.entegris.com and select the Legal Notices link from the footer.